

MENTORS EDUSERV TALENT REWARD EXAM (METRE) SAMPLE TEST PAPER

[For Students presently in Class 11 going to Class 12 in 2021] [STREAM: MEDICAL]

	ie : 2 h	INSTRUCTIONS	5. 400				
	[A]	General :					
OR.	1.	This Question paper contains THREE Parts, A to C (Physics, Chemistry and Biology).					
3ILAT(2.	This Question Paper contains 16 pages including cover page.					
HE INVIG	3.	This question paper contains total 120 questions (30 questions each in Physics & Chemistry and 60 questions in Biology).					
FROM T	4.	The Question Paper has blank spaces at the bottom of each page for rough work.No additional sheets will be provided for rough work.					
CTIONS	5. Blank papers, clip boards, log tables, slide rule, calculators, cellular phones, pagers and e gadgets, in any form, are NOT allowed.						
DO NOT BREAK THE SEALS ON THIS BOOKLET, AWAIT INSTRUCTIONS FROM THE INVIGILATOR.	6.	The OMR (Optical Mark Recognition) sheet shall be provided separately.					
	[B]	Answering on the OMR:					
	7.	Each question will have 4 choices in both the Sections, out of which only one choice is correct .					
	8.	Darken the bubble with Ball Pen (Blue or Black) ONLY.					
BOO	[C]	Filling – in Name and Registration No.					
ON THIS	9.	appropriate box in ink.					
EALS	[D]						
EAK THE SI	10.	For each question in you will be awarded 4 marks if you darken the bubble corresponding to the correct answer ONLY and zero (0) marks if no bubble is darkened. In all other cases, minus one (–1) mark will be awarded.					
Name : Registration No.:							

Corporate Office : Parus Lok Complex, Boring Road Crossing, Patna-1, Helpline No. : 9569668800 | Call : 7544015993/4/6/7

[2]	For S	Students in Class 11 goi	ng to Class 12 in 2021 (M	ED.) [SAMPLE TEST PAPER]	
		PART-A	: PHYSICS		
1.		-	•	rds with a velocity of 10 m/s. d seconds of the motion is	
	(Take g = 10m / s	²)			
	(A) 5:7	(B) 7:5	(C) 3:6	(D) 6:3	
2.	If a ball is thrown seconds of its as	• •	vith speed u, the distar	nce covered during the last	
	(A) $\frac{1}{2}gt^2$	(B) $ut - \frac{1}{2}gt^2$	(C) (u – gt)t	(D) ut	
3.	•	• ·	o particles A and B are s atio of the velocities wi	traight lines inclined at angle Il be	
	(A) 1:2	(B) 1:√3	(C) √3:1	(D) 1:3	
4.	Which of the follo	wing changes when a	a particle is moving with	uniform velocity	
	(A) Speed	(B) Velocity	(C) Acceleration	(D) Position vector	
5.	A man measures	time period of a pendu	ulum (T) in stationary lift.	If the lift moves upward with	
	acceleration $\frac{g}{4}$, the second s	nen new time period w	ill be		
	(A) $\frac{2T}{\sqrt{5}}$	(B) $\frac{\sqrt{5}T}{2}$	(C) $\frac{\sqrt{5}}{2T}$	(D) $\frac{2}{\sqrt{5}T}$	
6.		n of mass 'm' impinge enced by the surface v	•	on a surface with velocity u.	
	(A) mnu	(B) 2 mnu	(C) 4 mnu	(D) <u>1</u> mnu	
7.	A smooth inclined plane, of length L having inclination θ with the horizontal is inside a lift which is moving down with retardation 'a'. The time taken by a body to slide down the inclined plane, from rest will be				
	(A) $\sqrt{2L/a\sin\theta}$		(B) $\sqrt{2L/g\sin\theta}$		
	(C) $\sqrt{2L/(g-a)}$	sinθ	(D) $\sqrt{2L/(g+a)si}$	nθ	

Hentors Eduserv[®]

deep inside water. How much sand sho down at the rate of $g/6$? (A) $\frac{m}{5}$ (B) $\frac{2m}{5}$ 9. At the top of the trajectory of a projectile (A) Perpendicular to each other (C) Inclined to each other at an angle o 10. A cricketer hits a ball with a velocity 25 ground it passes over a fielder 50 m from ground) (A) 8.2 m (B) 9.0 m 11. A body of mass m is projected at an an negligible, then total change in moment (A) 2 mv (B) $\sqrt{2}$ mv 12. If a body A of mass M is thrown with veloc body B of the same mass is thrown with the ratio of horizontal range of A to B w (A) 1:3 (B) 1:1 13. Dimensional formula for torque is (A) L ² MT ⁻² (B) L ⁻¹ MT ⁻² 14. The potential energy of a particle varie where A & B are dimensional constants (A) ML ^{7/2} T ⁻² (B) ML ^{11/2} T ⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The mining will be (A) 0.1% (B) 0.8%						
 9. At the top of the trajectory of a projectile (A) Perpendicular to each other (C) Inclined to each other at an angle o 10. A cricketer hits a ball with a velocity 25 ground it passes over a fielder 50 m fror ground) (A) 8.2 m (B) 9.0 m 11. A body of mass m is projected at an a negligible, then total change in moment (A) 2 mv (B) √2 mv 12. If a body A of mass M is thrown with veloc body B of the same mass is thrown with rhe ratio of horizontal range of A to B wi (A) 1:3 (B) 1:1 13. Dimensional formula for torque is (A) L²MT⁻² (B) L⁻¹MT⁻² 14. The potential energy of a particle varie where A & B are dimensional constants (A) ML^{7/2}T⁻² (B) ML^{11/2}T⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minir will be (A) 0.1% (B) 0.8% 	An empty plastic box of mass <i>m</i> is found to accelerate up at the rate of $g/6$ when placed deep inside water. How much sand should be put inside the box so that it may accelerate down at the rate of $g/6$?					
 (A) Perpendicular to each other (C) Inclined to each other at an angle o 10. A cricketer hits a ball with a velocity 25 ground it passes over a fielder 50 m from ground) (A) 8.2 m (B) 9.0 m 11. A body of mass m is projected at an an negligible, then total change in moment (A) 2 mv (B) √2 mv 12. If a body A of mass M is thrown with veloce body B of the same mass is thrown with veloce body B of the same mass is thrown with the ratio of horizontal range of A to B with the ratio	(C) $\frac{3m}{5}$	(D) $\frac{4m}{5}$				
 10. A cricketer hits a ball with a velocity 25 ground it passes over a fielder 50 m fror ground) (A) 8.2 m (B) 9.0 m 11. A body of mass m is projected at an a negligible, then total change in moment (A) 2 mv (B) √2 mv 12. If a body A of mass M is thrown with veloc body B of the same mass is thrown with The ratio of horizontal range of A to B with (A) 1:3 (B) 1:1 13. Dimensional formula for torque is (A) L²MT⁻² (B) L⁻¹MT⁻² 14. The potential energy of a particle varie where A & B are dimensional constants (A) ML^{7/2}T⁻² (B) ML^{11/2}T⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minin will be (A) 0.1% (B) 0.8%	(B) Parallel to ea	ich other				
 11. A body of mass m is projected at an a negligible, then total change in moment (A) 2 mv (B) √2 mv 12. If a body A of mass M is thrown with veloce body B of the same mass is thrown with The ratio of horizontal range of A to B with (A) 1:3 (B) 1:1 13. Dimensional formula for torque is (A) L²MT⁻² (B) L⁻¹MT⁻² 14. The potential energy of a particle varie where A & B are dimensional constants (A) ML^{7/2}T⁻² (B) ML^{11/2}T⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minin will be (A) 0.1% (B) 0.8% 	m/s at 60° above the n the bat (assume the	e horizontal. How far above the e ball is struck very close to the				
 12. If a body A of mass M is thrown with velocies body B of the same mass is thrown with The ratio of horizontal range of A to B with (A) 1:3 (B) 1:1 13. Dimensional formula for torque is (A) L²MT⁻² (B) L⁻¹MT⁻² 14. The potential energy of a particle varie where A & B are dimensional constants (A) ML^{7/2}T⁻² (B) ML^{11/2}T⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minin will be (A) 0.1% (B) 0.8% 	ngle of 45° with the					
 body B of the same mass is thrown with The ratio of horizontal range of A to B with (A) 1:3 (B) 1:1 13. Dimensional formula for torque is (A) L²MT⁻² (B) L⁻¹MT⁻² 14. The potential energy of a particle varie where A & B are dimensional constants (A) ML^{7/2}T⁻² (B) ML^{11/2}T⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minin will be (A) 0.1% (B) 0.8% 	(C) mv	(D) mv / $\sqrt{2}$				
 13. Dimensional formula for torque is (A) L²MT⁻² (B) L⁻¹MT⁻² 14. The potential energy of a particle varie where A & B are dimensional constants (A) ML^{7/2}T⁻² (B) ML^{11/2}T⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minin will be (A) 0.1% (B) 0.8% 	the same speed at ar					
 (A) L²MT⁻² (B) L⁻¹MT⁻² 14. The potential energy of a particle varie where A & B are dimensional constants (A) ML^{7/2}T⁻² (B) ML^{11/2}T⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minir will be (A) 0.1% (B) 0.8% 	(C) 1:√3	(D) √3:1				
 14. The potential energy of a particle varie where A & B are dimensional constants (A) ML^{7/2}T⁻² (B) ML^{11/2}T⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minir will be (A) 0.1% (B) 0.8% 						
 where A & B are dimensional constants (A) ML^{7/2}T⁻² (B) ML^{11/2}T⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minir will be (A) 0.1% (B) 0.8% 	(C) L ² MT ⁻³	(D) LMT ⁻²				
 (A) ML^{7/2}T⁻² (B) ML^{11/2}T⁻² 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minir will be (A) 0.1% (B) 0.8% 	s with distance x fror	m a fixed origin as $U = \frac{A\sqrt{x}}{x^2 + B}$,				
 15. The least count of a stop watch is 1/5 s measured to be 25 seconds. The minir will be (A) 0.1% (B) 0.8% 	then dimensional for	rmula for AB is				
measured to be 25 seconds. The minir will be (A) 0.1% (B) 0.8%	(C) M ² L ^{9/2} T ⁻²	(D) ML ^{13/2} T ⁻³				
	The least count of a stop watch is 1/5 second. The time of 20 oscillations of a pendulum is measured to be 25 seconds. The minimum percentage error in the measurement of time will be					
16 A stone is thrown with an initial speed of	(C) 1.8%	(D) 8%				
It falls down in water after 2 sec. The he	•	e in vertically upward direction.				
(A) 4.9 m (B) 9.8 m	(C) 19.8 m	(D) 24.7 m				

[4]	For Students in Class 11 going to Class 12 in 2021 (MED.) [SAMPLE TEST PAPER]					
17.	An object at rest in s	pace suddenly explod	les into three parts of s	ame mass. The momentum		
	of the two parts are 2P \hat{i} and P \hat{j} . The momentum of the third part.					
	(A) Will have a mag	nitude $P\sqrt{3}$	(B) Will have a magr	nitude P $\sqrt{5}$		
	(C) Will have a mag	nitude P	(D) Will have a magr	nitude 2P		
18.		d. If the time of contac		ormally and bounces back I wall is 10 ⁻² s, the average		
	(A) 1123 N	(B) 1000 N	(C) 500 N	(D) 200 N		
19.	The angle of project	ion at which the horizo	ontal and maximum hei	ght of projectile are equal is		
	(A) 45°	(B) $\theta = \tan^{-1}(0.25)$	(C) $\theta = \tan^{-1} 4$	(D) 60°		
20. T				f spring constant K is given quantity. The value of x and		
	(A) $x = \frac{1}{2}, y = \frac{1}{2}$	(B) $x = -\frac{1}{2}, y = -\frac{1}{2}$	(C) $x = \frac{1}{2}, y = -\frac{1}{2}$	(D) $x = -\frac{1}{2}, y = \frac{1}{2}$		
21.			-	aneously another ball was g = 10 m/s²). they will cross		
	(A) 1 s	(B) 2 s	(C) 3 s	(D) 4 s		
22.	A car covers 1/3 dis	tance with speed 20 k	m/hr and 2/3 with 60 k	xm/hr. Average speed is		
	(A) 40 km/hr	(B) $50\sqrt{2}$ km / hr	(C) 36 km/hr	(D) 80 km/hr		
23.	A body of mass 2 kg moving on a horizontal surface with an initial velocity of 4 m/sec comes to rest after 2 sec. If one wants to keep this body moving on the same surface with a velocity of 4 m/sec. the force required is					
	(A) 8 N	(B) 4 N	(C) Zero	(D) 2 N		
24.	In a gravity free space, a man of mass M standing at a height h above the floor throws a stone of mass m downwards with a speed u. When the stone reaches the floor, distance of the man above the floor will be					
	(A) h	(B) $h + \frac{mh}{M}$	(C) 2 h	(D) $h - \frac{2Mh}{m}$		

For St	udents in Class 11 goi	ng to Class 12 in 202:	L (MED.) [SAMPLE T	EST PAPER] [5]
25.	The physical quant	ity that has no dimer	isions	
	(A) Angular velocit	у	(B) Linear momen	itum
	(C) Angular mome	ntum	(D) Strain	
26.	•	¹ . If the change in ve		ation travelling a distance of 0.18 ms ⁻¹ during this time, its
	(A) 0.01 ms ⁻²	(B) 0.04 ms ⁻²	(C) 0.03 ms⁻²	(D) None of these
27.		• •	of 20 m/s. If a force of at will now be the veloc	100 N is applied on it for 10 s sity of the body.
	(A) 200 m/s	(B) 220 m/s	(C) 240 m/s	(D) 260 m/s
28.			-	e coin reaches the floor of the it is moving uniformly, then
	(A) $t_1 = t_2$	(B) $t_1 > t_2$	(C) $t_1 < t_2$	
	(D) $t_1 < t_2 \text{ or } t_1 > t_2$	depending on wheth	er the lift is going up o	or down
29.	kg is suspended f	rom it but will break		I not break when a mass of 25 25 kg. What is the maximum pe ?
	(g = 10 ms ²)			
	(A) 10 m/s ²	(B) 25 m/s ²	(C) 2.5 m/s ²	(D) 5 m/s ²
30.	a muzzle velocity v	-	cliff a distance D awa	zontal and a shell is fired with ay. Then the height from the
	(A) $D\sin\theta - \frac{gD^2}{2v_0^2\sin\theta}$	$n^2 \theta$	(B) $D\cos\theta - \frac{gI}{2v_0^2c}$	$\frac{D^2}{\cos^2 \theta}$
	(C) $D\tan\theta - \frac{gD}{2v_0^2 cc}$	$\frac{1}{2} \frac{1}{2} \frac{1}$	(D) $D \tan \theta - \frac{gD}{2v_0^2 \sin \theta}$	$\frac{1}{10^2 \theta}$

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7 Mentors Eduserv[®]

For S	tudents in Class 11 going	to Class 12 in 2021 (MEI	D.) [SAMPLE TEST	PAPER] [7]	
38.	The value of vander V	Vaal's constant 'a' is min	imum for -		
	(A) helium	(B) hydrogen	(C) nitrogen	(D) chlorine	
39.	Which of the following is correct decreasing order of r.m.s. velocity at same temperature for H_2, N_2, CO and O_2 -				
	(A) $O_2 > CO > N_2 > H$	2	(B) H ₂ > N ₂ > O ₂ >	· CO	
	(C) $H_2 > N_2 > CO > O$	2	(D) $N_2 > CO > H_2$	> 0 ₂	
40.	If the energy of first or	bit of hydrogen atom is –	1312 kJ/mole then th	e value of IP in KJ/mol is-	
	(A) + 1312	(B)-1312	(C) – 675.5	(D) + 675.5	
41.	How many electron fil	led in the orbital which h	ave n = 3, ℓ = 2, m =	2 :	
	(A) 2	(B) 10	(C) 14	(D) 6	
42.	Electronic configuration	on of Cr is 3d ⁵ 4s ¹ not 3d	⁴ 4s ² , it is explain by	the following :-	
	(A) Hund's Rule of ma	aximum multiplicity	(B) Pauli's exclusio	on principle	
	(C) Aufbau principle		(D) Uncertainty pri	nciple	
43.	Difference of radius of	f third and second orbit o	of hydrogen atom –		
	(A) 5r ₁	(B) $\frac{3}{2}r_1$	(C) $\frac{2}{3}r_1$	(D) r ₁	
44.	For $2p_x$, $2p_y$ and $2p_z$ w	/hich quantum number s	ame are –		
	(A) n	(B) n, ℓ	(C) n, ℓ, m	(D) n, ℓ, s	
45.	According to Neils Bo	hr order of energy of 3s,	3p and 3d orbital is -	-	
	(A) 3s > 3p > 3d	(B) 3s < 3p < 3d	(C) 3s < 3p > 3d	(D) 3s = 3p = 3d	
46.	In which the following	pairs, the two species a	re iso-structural -		
	(A) SO $^{2-}_3$ and NO 3	(B) BF_3 and NF_3	(C) BrO ₃ ⁻ and XeO	$D_3(D) SF_4$ and XeF_4	
47.		l oxide is Z_2O_3 . IF 6 mg. c kide, then the atomic wig		ed for complete reduction	
	(A) 227.9	(B) 159.6	(C) 79.8	(D) 55.8	
48.	The number of moles	of OH [_] in 0.3 litre of 0.00	05 M Ba(OH) ₂ is :		
	(A) 0.075	(B) 0.005	(C) 0.045	(D) 0.003	
49.	The valume of CO_2 at	STP obtained by heating	g 1 gm of CaCO $_{3}$ will	be :	
	(A) 1 litre	(B) 22.4 litres	(C) 0.224 litre	(D) 11.2 litre	
50.	The vapour density of	a gas is 11.2 the volume	e occupied by 11.2 gr	n of this gas at NTP is :	
	(A) 1 litre	(B) 11.2 litre	(C) 22.4 litre	(D) 20 litre	

Mentors Eduserv[®]

[8]	For Stu	dents in Class 11 going to	Class 12 in 2021 (MED	D.) [SAMPLE TEST PAPER]		
51.	The significant figure	s in 5.23 × 10⁵ are :				
	(A) 8	(B) 3	(C) 4	(D) Infinite		
52.	From the following th	e number of atoms is gre	eater in :			
	(A) 4 g hydrogen	(B) 71 g chlorine	(C) 48 g magnisu	m (D) 127 g iodine		
53.	One mole of CO_2 cor	ntains :				
	(A) 6.02 × 10 ²³ atoms	s of C	(B) 6.02 × 10 ²³ at	oms of O		
	(C) 18.1 × 10 ²³ molec	cules of CO ₂	(D) 3 gram molec	ules of CO ₂		
54.	In the periodic table,	in the same group, the e	lements has :			
	(A) Same ionization p	otential	(B) Same electror	negativity		
	(C) Same electron af	finity	(D) Same no. of v	alence electrons		
55.	Which of the following 7 :	g statement is incorrect f	or an atom having ele	ectronic configuration 2, 8,		
	(A) It forms diatomic molecules (B) It is a non metal element					
	(C) Its valency is 1		(D) It forms basic oxide			
56.	Electronegativity is th	ne measurement of capa	city of an atom by wh	nich :		
	(A) Electrons get repl	led				
	(B) Electrons get attracted					
	(C) Point with proton					
	(D) Co-exist electronegativity with another atom					
57.	Paulling's electroneg	ativity values of elements	s are useful in predict	ing :		
	(A) Polarity of the bor	nd	(B) Position in the	E.M.F. series		
	(C) Coordination num	nbers	(D) Dipole mome	nts		
58.	The electronic configue to the same block as		re given below. Which	elements does not belong		
	(A) [Xe] 4f ¹⁴ 5d ¹⁰ 6s ²	(B) [Kr]4d ¹⁰ 5s ²	(C) [Ne] 3s ² 3p ⁵	(D) [Ar]3d ¹⁰ 4s ²		
59.	Elements X, Y, and Z statements is true ab		, 37 and 55 respectiv	ely. Which of the following		
	(A) Their ionization p	otential would increase v	vith increasing atomic	c number		
	(B) 'Y' would have an	ionization potential betw	een those of 'X' and	'Z'		
	(C) 'Z' would have the	highest ionization poter	ntial			
	(D) 'Y' would have the	e highest ioniztion potent	ial			
60.	Which one of the follo	owing ions has the small	est radius ?			
	(A) CI⁻	(B) S ^{2–}	(C) K ⁺	(D) Ca ²⁺		
I						

Mentors Eduserv®

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7

[12]	For Students in Class 11 going	to Class 12 in 2021 (MED.) [SAMPLE TEST PAPER]					
75.	In which of the following types of phyllotax	y a pair of leave arise at each node :					
	(A) Opposite	(B) Alternate					
	(C) Whorled	(D) More than one option is correct					
76.	Which of the following is correct for the flo	ral diagram given below :					
	\bigcirc						
	(A) It is found in lady's finger and cotton plant						
	(B) It is found in Cassia and gulmohar which also posses asymmetric flowers						
	(C) It is found china rose						
	(D) None of these						
77.	Endospermic seeds are found in :						
	(A) Castor	(B) Maize					
	(C) Beans	(D) More than one options is correct					
78.	Observe the floral formula given below :						
	$\% \varphi^{*} K_{(5)} C_{1+2+(2)} A_{(9)+1} G_{1}$						
	Identify the plants which possess the above	ve floral formula :					
	(A) Lupinus, Pisum	(B) Solanum, Tabacum					
	(C) Lilium, Aloe	(D) Brassica, Solanum					
70							
79.	$\bigoplus \overset{\bullet}{} \overset{\bullet}{} K_{(5)} \overset{\bullet}{C_{(5)}} \overset{\bullet}{A_5} \overset{\bullet}{\underline{G}}_{(2)}$ is floral formula of						
	(A) Petunia (B) Brassica	(C) Allium (D) Sesbania					
80.	Keel is the characteristic feature of flower						
	(A) Aloe (B) Tomato	(C) Tulip (D) Indigofera					
81.	Match column-I with column-II and choose below.	e the correct combination from the options given					
	Column-I	Column-ll					
	(Position of floral	(Represented in)					
	parts on thalamus)						
	A. Hypogynous	I. Ray florets of sunflower					
	B. Perigynous	ll. Brinjal					
	C. Epigynous	III. Peach					
	(A) A–II, B-I, C-III	(B) A-I, B-II, C-III					
	(C) A-III, B-II, C-I	(D) A-II, B-III, C-I					

101000	ident	s in Class 11 going to Class 12 in 2021 (I	MED.) [SAMPLE TEST PAPER] [13]
82.		ch the column-I containing types of <i>aes</i> choose the correct option.	stiva	tion with their examples given in column-II
		Column-I		Column-II
		(Types of aestivation)		(Examples)
	A.	Valvate	I.	Cotton
	В.	Twisted	II.	Calotropis
	C.	Imbricate	III.	Bean
	D.	Vexillary	IV.	Gulmohar
	(A)	A-I; B-II; C-IV; D-III	(B)	A-II; B-I; C-IV; D-III
	(C)	A-II; B-IV; C-I; D-III	(D)	A-II; B-I; C-III; D-IV
83.	Wh	ich one of the following have vessels a	s the	ir characteristic feature ?
	(A)	Angiosperms (B) Gymnosperms	(C)	Pteridophytes (D) Bryophytes
84.	In s	tems, the protoxylem lies towards the of the organ.		and the metaxylem lies towards the
	(A)	Centre; periphery	(B)	Periphery; centre
	(C)	Periphery; periphery	(D)	Centre; centre
85.	Mat	ch column-I with column-II and chose t	he co	orrect option.
		Column-I		Column-II
	Α.	Bulliform cells	I.	Initiation of lateral roots
	Β.	Pericycle	II.	Root
	C.	Endarch xylem	III.	Grasses
	D.	Exarch xylem	IV.	Dicot leaf
	E.	Bundle sheath cells	V.	Stem
	(A)	A - III, B - V, C - IV, D - I, E - II	(B)	A - II, B - V, C - I, D - III, E - IV
	(C)	A - II, B - IV, C - I, D - III, E - V	(D)	A - III, B - I, C - V, D - II, E - IV
86.	Mat optio		func	tion given in column II and choose the correct
		Column-I		Column-II
		(Term)		(Fucntions)
	А.	Meristem	I.	Photosynthesis, storage
	В.	Parenchyma	II.	Mechanical support
	C.	Collenchyma	III.	Actively dividing cells
	D.	Sclerenchyma	IV.	Stomata
	Ε.	Epidermal tissue	V.	Sclereids
	(A)	A – I, B – III, C – V, D – II, E - IV	(B)	A - III, B - I, C - II, D - V, E - IV
	(C)	A - II, B - IV, C - V, D - I, E - III	(D)	A - V, $B - IV$, $C - III$, $D - II$, $E - I$

Mentors Eduserv[®]

[14]	For Students in Class 11 going to C	lass 12 in 2021 (MED.) [SAMPLE TEST PAPER]
87.	Which anatomy of plants is being described b	y the statements given below
	 The cortex consists of several layers of the spaces. 	nin-walled parenchyma cells with intercellular
	(ii) The tangential as well as radial walls of the impermeable, waxy material-suberin-in for	e endodermal cells have a deposition of water- orm of casparian strips.
	(iii) Secondary growth takes place.	
	(iv) Pith is small or inconspicuous.	
	(A) Dicotyledonous root (B) Monocotyledonous root
	(C) Dicotyledonous stem (D) Monocotyledonous stem
88.	Cork is formed from	
	(A) Phellogen (B) Vascular cambium
	(C) Phloem (D) Xylem
89.	The occurs in layers below the epide	ermis in dicotyledonous plants.
	(A) Parenchyma (B) Sclerenchyma (C) Collenchyma (D) Aerenchyma
90.	During the formation of leaves and elongation apical meristem, constitute the	of stem, some cells 'left behind' from the shoot
	(A) Lateral meristem (B) Axillary bud
	(C) Cork cambium (D) Fascicular cambium
91.	When the circulatory system lacks arteries, ve	eins and capillaries, it is called as
	(A) closed type (B) mixed type
	(C) in appropriate information (D) open type
92.	Epithelial tissue origined from :-	
	(A) Ectoderm (B) Endoderm (C) Mesoderm (D) All of above
93.	Which of the following is a saturated fatty acid	1?
	(A) Oleic acid (B) Linoleic acid (C) Arachidonic acid (D) Palmitic acid
94.	The type of symmetry belongs to animals is	
	(A) transverse symmetry (B) lateral symmetry
	(C) bilateral symmetry (D) oblique symmetry
95.	Study the given statements and select the cor	rect option
	(i) Carbohydrates, proteins, nucleic acids ar	nd lipids are primary metabolites
	(ii) Alkloids, flavonoids, rubber, etc are secon	idary metabolites
	(iii) Linoleic, linolenic and plmitic acids are the	e three essential fatty acids
	(A) Statemetns (i) and (ii) are correct (B) Statemetns (i) and (iii) are incorrect
	(C) Statemetns (i) and (iii) are correct (D) Only statement (ii) is incorrect

For Stu	udents in Class 11 going to Class 12 in 2021	L (MED.) [SAMPLE TEST PAPER] [15]			
96.	Consider the following statements conc	erning epithelial tissues			
	a. These tissues have a free surface environment	e, which face either a body fluid or the outside			
	b. It provides a covering or a lining for	some part of the body			
	c. They have least regenerating power	r -			
	d. Without exception all epithelial tissue rest on basement membrane				
	Which of the above two statements are correct?				
	(A) a & b (B) b & c	(C) c & d (D) a & d			
97.	Higher phylum like echinoderms are				
	(A) triploblastic animals	(B) quadroblastic animals			
	(C) diploblastic animals	(D) uniblastic animals			
98.	Phospholipids are :				
	(A) amphipathic (B) amphibolic	(C) hydrophobic (D) none of these			
99.	Which of the following function is not pe				
	(A) They protect the underlying tissues				
	(B) Germinal layer of gonads produce g	ametes			
	(C) They help in gaseous exchange				
	(D) Some epithelial cells get specialise				
100.	The notochord is derived from which of				
404	(A) Ectoderm (B) Mesoderm	(C) Endoderm (D) Placoderm			
101.	Lysine is an essential amino acid as it is				
	(A) not formed in the body and has to be(B) important constituent of all proteins	e provided in diet			
	(C) with high nutritive value				
	(D) very rare				
102.	Find out the correct match				
-	Column-I	Column-ll			
	a. Sweat gland	(i) Compound saccular gland			
	b. Submandibular gland	(ii) Simple branched saccular gland			
	c. Parotid gland	(iii) Simple coiled tubular gland			
	d. Sebaceous gland	(iv) Compound tubular alveolar gland			
	(A) $a \rightarrow (iii), b \rightarrow (i), c \rightarrow (iv), d \rightarrow (ii)$	(B) $a \rightarrow (i), b \rightarrow (iii), c \rightarrow (ii), d \rightarrow (iv)$			
	(C) $a \rightarrow (iv), b \rightarrow (ii), c \rightarrow (iii), d \rightarrow (i)$	(D) $a \rightarrow (ii), b \rightarrow (iv), c \rightarrow (i), d \rightarrow (iii)$			

Mentors Eduserv[®]

For St	udents in Class 11 going to Class 12 in 2021 (MED.) [SAMPLE TEST PAPER] [17]					
108.	Consider the following statement regarding white adipose tissue						
	a. It is characterised by a single large droplet of fat in the cytoplasm of its cells						
	b. Cells contain many mitochondria						
	c. It is found in new born baby and hibernating mammals						
	d. It cannot be a substitute of food						
	Which of the above statement is correct?						
	(A) a & b (B) b & c (C) b, c & d (D) Only a						
109.	Fill in the blanks with the correct options.						
	IAhave cellular level of organisation.						
	II. Coelom is not seen inB						
	III. Radial symmetry is seen in phylum–Coelenterata, Ctenophora andC						
	IV. Notochord is lacking inD						
	VEare bilaterally symmetrical.						
	Here A to E refers to						
	(A) A–Platyhelminthes, B–Echinodermata, C–Arthropoda, D–Mollusca, E–Porifera						
	(B) A–Porifera, B–Platyhelminthes, C–Echinodermata, D–Mollusca, E–Arthropoda						
	(C) A–Porifera, B–Echinodermata, C–Mollusca, D–Arthropoda, E–Platyhelminthes						
	(D) A–Echinodermata, B–Arthropoda, C–Platyhelminthes, D–Mollusca, E–Porifera						
110.	The component present in both nucleotides and nucleosides is						
	(A) Sugar (B) Phosphate						
444	(C) Nitrogenous base (D) Both (A) and (C)						
111.	Which one is correct ? (A) Blood = plasma + RBC + WBC + blood platelets						
	 (B) Neuron = cyton + dendrite + axon + synapse (C) Plasma = blood – lymphocytes 						
	(D) Lymph = plasma + RBC + WBC						
112.	Body cavity of which of the following phyla is represented in diagram :						
112.	Body cavity of which of the following phyla is represented in diagram :						
	(A) Coelenterata (B) Platyhelminthes (C) Annelida (D) Aschelminthes						

[18]	For Students in Class 11 goi	ing to Class 12 in 2021 (MED.) [SAMPLE TEST PAPER]				
113.	Saturated fatty acids possess bonds between carbon atoms and are room ttemperataure					
	(A) Single, solids	(B) Double, solids				
	(C) Single, liquids	(D) Double, liquids				
114.	Match the types of WBC listed in Column I with shape of nucleus given under Column II. Choose the answer which gives the correct combination of alphabets of the two columns :					
	Column I (Types of WBC)	Column II (Shape of nucleus)				
	A. Neutrophils	p. Kidney-shaped				
	B. Eosinophils	q. S-shaped				
	C. Basophils	r. 3 to 5 lobes				
	D. Monocytes	s. 2 lobes				
		t. Disc-shaped				
	(A) A \rightarrow r, B \rightarrow s, C \rightarrow q, D \rightarrow p					
	(B) A \rightarrow r, B \rightarrow t, C \rightarrow p, D \rightarrow q					
	(C) A \rightarrow t, B \rightarrow r, C \rightarrow q, D \rightarrow s					
	(D) A \rightarrow q, B \rightarrow p, C \rightarrow t, D \rightarrow r					
115.	Ctenophora taxonomically more or less	s resemble the				
	(A) Porifera	(B) Coelenterata				
	(C) Platyhelminthes	(D) Nematoda				
116.	Which of the two groups of the given formula is involved in peptide bond formation between different amino acids ?					
		(2)				
	$ \begin{array}{c} 2\\ H\\ -\\ H_2N - C\\ -\\ COOH \end{array} $					
		4				
	(A) 2 and 3 (B) 1 and 3	(C) 1 and 4 (D) 2 and 4				
117.	Myelin sheath is derived from :					
	(A) Neuroglial cells (B) Schwann cells					
	(C) Nerve cells	(D) Both (A) & (B)				

118. Choose the correct one for sponges ?

- (A) Are highly regenerative
- (B) Are universally radially symmetrical

(C) Contain calcareous spicules but lack the siliceous ones

- (D) They are found only in freshwater
- **119.** Areolar connective tissue joins
 - (A) Bones with bones (B) Fat body with muscles
 - (C) Integument with muscles (D) Bones with muscles

120. Given molecular formula belongs to which of the following groups of biomolecules ?

$$\begin{array}{c} O & CH_2 - O - C - R_1 \\ H_2 - C - O - CH & O \\ CH_2 - O - CH & O \\ CH_2 - O - C - R_3 \end{array}$$

(A) Carbohydrates

(C) Nucleic acid

(B) Proteins

(D) Triglycerides

[19]

MENTORS EDUSERV TALENT REWARD EXAM (METRE) SAMPLE TEST PAPER

[For Students presently in Class 11 going to Class 12 in 2021]

[STREAM: MEDICAL]

PHYSICS

1.	(B)	2.	(A)	3.	(D)	4.	(D)	5.	(A)
6.	(B)	7.	(D)	8.	(B)	9.	(A)	10.	(D)
11.	(B)	12.	(B)	13.	(A)	14.	(B)	15.	(B)
16.	(B)	17.	(B)	18.	(D)	19.	(C)	20.	(D)
21.	(B)	22.	(C)	23.	(B)	24.	(B)	25.	(D)
26.	(D)	27.	(B)	28.	(A)	29.	(C)	30.	(C)

CHEMISTRY

31.	(A)	32. (C)	33. (D)	34. (C)	35. (D)
36.	(A)	37. (D)	38. (A)	39. (C)	40. (A)
41.	(A)	42. (C)	43. (A)	44. (B)	45. (D)
46.	(C)	47. (D)	48. (D)	49. (C)	50. (B)
51.	(B)	52. (A)	53. (A)	54. (D)	55. (D)
56.	(B)	57. (A)	58. (C)	59. (B)	60. (D)

BIOLOGY

61.	(B)	62. (A)	63. (B)	64. (A)	65. (A)
66.	(B)	67. (A)	68. (B)	69. (B)	70. (A)
71.	(D)	72. (D)	73. (C)	74. (B)	75. (A)
76.	(D)	77. (D)	78. (A)	79. (A)	80. (D)
81.	(D)	82. (B)	83. (A)	84. (A)	85. (D)
86.	(B)	87. (A)	88. (A)	89. (C)	90. (B)
91.	(D)	92. (D)	93. (D)	94. (C)	95. (A)
96.	(A)	97. (A)	98. (A)	99. (A)	100. (B)
101.	(A)	102. (A)	103. (C)	104. (A)	105. (A)
106.	(A)	107. (A)	108. (D)	109. (B)	110. (D)
111.	(A)	112. (B)	113. (A)	114. (A)	115. (B)
116.	(B)	117. (D)	118. (A)	119. (C)	120. (D)